I deal from more 25 years of polymers, therefore I will to meet, even if only virtually, other people with the same passion and the same interests. The polymers with whom I come into contact in my work experience are: PA6, PA66, ABS, transparent ABS, PS, PP, PE (LDPE, MLDPE, VLDPE, HDPE), PC, blend PA/ABS, PC/PBT, biopolymers PBAT, PBS, PBSA, PLA, PHA.
A chat with friends ..... “If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas.” George Bernard Shaw
domenica 22 gennaio 2012
domenica 23 ottobre 2011
Chiusure per Bottiglie
Chiusure per bottiglie
Tappo in sughero (Naturale, Tecnico, a Fungo)
Tappo “corona” metallico
Capsula metallica
Tappo con alette
Tappo di vetro
Tappo polimerico “espanso”
TAPPO IN SUGHERO NATURALE
Tappo cilindrico monopezzo ottenuto direttamente dalla corteccia dell’albero da sughero. La sua altezza massima è determinata dallo spessore della corteccia di origine.
TAPPO IN SUGHERO BIRONDELLATO: Tappo cilindrico costituito da una parte centrale (corpo) fatta da trucioli di sughero tenuti insieme da colle, di solito poliuretaniche, e ricoperto in alto e in basso da due dischetti di sughero naturale.
TAPPO IN SUGHERO AGGLOMERATO: Tappo cilindrico ottenuto anche in questo caso da un agglomerato di sughero granulato, tenuto insieme da collanti con o senza smussatura dei bordi superiore e inferiore.
La produzione dei tappi tecnici fu la prima risposta alla sempre minore disponibilità di sughero naturale data dall’industria. Si aumentò così notevolmente la disponibilità di chiusure, dando una nuova destinazione sia alle parti di corteccia di spessore più basso di quello richiesto, sia alla massa di cascami ottenuti durante la fabbricazione dei tappi monopezzo.

I granuli ottenuti per triturazione delle cortecce più sottili o dai cascami, una volta vagliati per eliminare le impurezze (frammenti di corteccia ecc.) e selezionati in base al loro peso specifico, vengono agglomerati tra loro con colle in modo da ottenere un materiale il più compatto possibile.
domenica 16 ottobre 2011
I tappi sintetici

I tappi sintetici: tecnologie di produzione, dimensioni, struttura interna ed esterna, tipi di materiale, caratteristiche chimico fisiche.
Da alcuni anni si va sempre più diffondendo l’uso di tappi sintetici, in sostituzione di quelli di sughero, per la chiusura delle bottiglie di vino.......
I tappi sintetici
I tappi sintetici due
Chiusure per bottiglie
mercoledì 12 ottobre 2011
Translation of a paper presented at the 20th Congress Science and Technology of Macromolecules. TERNI 11-15 September 2011
Mechanical characterization, rheological, thermal and morphological of PA6 / ABS blends with different content of PA6
C. Di Fiorea, S. Taglialatela Scafatia, P. Cerrutib, M. Malinconicob
aCossa Polimeri srl, Via dei Brughiroli, 6 21050 Gorla Maggiore (VA)
bICTP-CNR, Via Campi Flegrei,34 Comprensorio “Adriano Olivetti” 80078 Pozzuoli (NA)
Abstract. The growing economic interest towards the polymer alloys, especially for specific technological applications, such as in the automotive industry, leads the research and development of new polymer blends. In this work we have studied the characteristics of a series of blends of PA6 / ABS with different content of PA6. The samples of blends were analyzed from different point of view. Mechanically: tensile, flexural, impact, properties; Rheologically: viscosity / shear rate curves measured with capillary rheometer and MFI (melt flow rate); Thermally: temperature Vicat softening, DSC, DMA and TGA analysis; and Morphologically: (SEM micrograph). The aim of this study was to correlate, if possible, the obtained values of different properties to the content of PA6 in the blend.
1. INTRODUCTION
In specific technological applications is now a well-established practice the use of polymer alloys in order to obtain new materials which combine the characteristics, in terms of chemical, physical or mechanical properties, of the individual blend components, through their mixing in the melt. PA/ABS is polymer blend of great interest both academically, a lot of scientific literature1,2, has been produced, several patents were made on this blend3, and there are big industrial interest (automotive sector).
The nylon represent an interesting class of polymers for technological applications which, although exhibiting suitable characteristics for many applications (good chemical resistance, good mechanical properties at high temperatures), however, have several unfavorable aspects such as high hygroscopicity and poor dimensional stability.In this study were prepared by a series of mixtures of PA6 / ABS with different compositions of PA6 containing a constant amount of butadiene. Indeed, given that the content of butadiene in ABS strongly influences the mechanical properties, eg. elastic modulus and Izod impact strength, as well as the thermal properties, eg. the Vicat softening temperature, to study the influence of the percentage of PA6 on the properties of the blend it was decided to maintain constant the amount butadiene and evaluate how the growing presence of PA6 change the properties of the blend.
The samples obtained were characterized in terms of mechanical (tensile properties, flexural, impact), rheological (MFI melt flow index, curves viscosity / shear rate), thermal (Vicat softening temperature, DSC analysis, DMA, and TGA ) and morphology (SEM micrograph).
2. EXPERIMENTAL PART
The blends, with growing PA6 content, as indicated in Tab. 1, were prepared by corotating twin screw extruder (model Labtech L / D = 40) operating at 300 rpm with temperatures of the cilinder between 240 and 260 ° C. Of each sample were printed specimens, dimensions conform to technical standards ASTM, by Sandretto injection molding machine. The rheological characterization was performed by CEAST capillary rheometer at a temperature of 240 ° C and nozzle L / D = 20/1 in the range of shear rates between 100 and 5000 s-1. The values of Vicat softening temperature were measured, according to ASTM D1525, with instrument CEAST HDT Vicat 3, at 50 ° C / h and with weight of 1 Kg and 5 Kg. The notched Izod impact strength values were determined with pendulum CEAST RESIL 5.5. Both properties tensile and bending were obtained using a dynamometer INSTRON 4467 equipped with indicator strain. The morphological study was conducted by means of scanning electron microscopy (SEM FEI Quanta 100) observing the fracture surfaces of specimens broken in liquid nitrogen and metallized with a gold-palladium mixture. Finally, the thermal analysis DSC was performed using a Pyris 6 DSC Perkin Elmer with the following temperature program: 30 to 260 at 10 ° C / min, from 260 ° C to 30 ° C to 10 ° C / min, from 30 ° C to 260 ° C at 10 ° C / min.
2. EXPERIMENTAL PART
The blends, with growing PA6 content, as indicated in Tab. 1, were prepared by corotating twin screw extruder (model Labtech L / D = 40) operating at 300 rpm with temperatures of the cilinder between 240 and 260 ° C. Of each sample were printed specimens, dimensions conform to technical standards ASTM, by Sandretto injection molding machine. The rheological characterization was performed by CEAST capillary rheometer at a temperature of 240 ° C and nozzle L / D = 20/1 in the range of shear rates between 100 and 5000 s-1. The values of Vicat softening temperature were measured, according to ASTM D1525, with instrument CEAST HDT Vicat 3, at 50 ° C / h and with weight of 1 Kg and 5 Kg. The notched Izod impact strength values were determined with pendulum CEAST RESIL 5.5. Both properties tensile and bending were obtained using a dynamometer INSTRON 4467 equipped with indicator strain. The morphological study was conducted by means of scanning electron microscopy (SEM FEI Quanta 100) observing the fracture surfaces of specimens broken in liquid nitrogen and metallized with a gold-palladium mixture. Finally, the thermal analysis DSC was performed using a Pyris 6 DSC Perkin Elmer with the following temperature program: 30 to 260 at 10 ° C / min, from 260 ° C to 30 ° C to 10 ° C / min, from 30 ° C to 260 ° C at 10 ° C / min.
Tab. 1: Composition of the samples.
CAMPIONE
|
COMPOSIZIONE
|
CAMPIONE
|
COMPOSIZIONE
|
PA 0
| ABS 100% |
PA40
|
PA6 40% ABS 60%
|
PA10
|
PA6 10% ABS 90%
|
PA50
|
PA6 50% ABS 50%
|
PA20
|
PA6 20% ABS 80%
|
PA60
|
PA6 60% ABS 40%
|
PA30
|
PA6 30% ABS 70%
|
PA65
|
PA6 65% ABS 35%
|
3 RESULTS AND DISCUSSION
The Izod impact strength values at 23 ° C, shown in Fig. 1, reveal that the Izod impact strength of only ABS is not appreciably influenced by the presence of PA6 for contents up to 10% (sample PA10), while the presence in a concentration higher PA6 in the blend (up to 30%) is manifested as a defect induced in the morphological structure, making the compound more fragile. The Izod impact strength values show, however, between the PA30 and the PA40 an increase in impact strength from 204 J / but values greater than 620 J / m. This shows that in this range of composition is achieved a significant degree of adhesion at the interface between the components, resulting in effective dissipation of the impact energy. A sensitive change of characteristics, in this composition range, is also found in the values of softening temperature VICAT: from 125 ° C to 171 ° C of PA30 PA40 of (see Fig. 2). As reported is further confirmed by morphological analisys (Fig. 3) between these two compositions shows that a change in morphology, with one aspect of the ductile fracture for the sample PA40, characterized by the frequent variation of the direction of propagation of the fracture, differently from the sample PA30, for which the surface shows a brittle-type fracture, with fracture lines that propagate along the sample without interruption. Since the length of the path of a fracture is related to the ability of the sample to dissipate energy, frequent changes in direction lead to a lengthening of the path of the fracture, and thus to higher values of resilience. It is evident that, for compositions in which PA6 is present at 40% or greater, it determines an inversion of phase, with the polyamide as a continuous phase and the dispersed phase as ABS. To maintain constant the content of butadiene, the copolymer, as the alloy is enriched in PA6, must contain a fraction butadiene higher, and consequently manifest a more elastomeric behavior. Furthermore, since the energy at the interface between phase and polyamide elastomeric phase decreases drastically when the polyamide becomes the continuous phase (between 30 and 40% polyamide) as a result is obtained an effective dissipation of the impact energy.
Fig. 1: Resilience Izod (23 ° C) as a function of PA6 content
Fig. 2: Performance of the "VICAT" (at 50 ° C / h) as a function of the PA6 content.
(a)
(b)
Fig. 3: SEM micrographs of PA30 (a) and PA40 (b) samples.
Another evidence of the change that takes place between the properties of the blends containing 30% and 40% of PA6 emerges from the DSC diagram (Fig. 4). Indeed in cooling is observed that the phenomena of crystallization of PA6 occur for a content of at least 40% (from the sample PA40 in Fig. 4 a) and that in correspondence of such a composition will begin to highlight the occurrence of a multi peak fusion in the second heating scan (Fig. 4 b), which can be attributed to the fusion of two different crystal structures. The melting peak at a lower temperature is due to the fusion of crystals formed during cooling, while the second is related to the fusion of crystals formed during heating, the perfection of which implies higher melting temperatures.
Fig. 4: DSC paths in cooling (a) and second run in heating (b)
4. CONCLUSIONS
The behavior of alloy PA6 / ABS with increasing content of PA6 at constant content of the polybutadiene phase was studied through chemical-physical, morphological and mechanical Izod impact investigations. It was observed that, for PA6 content lower than 40%, the alloys have a brittle behave, as a result of a high incompatibility at the interface between the components. For the content of polyamide in excess of 40%, the system shows a ductile and tough behavior, with good dissipation of the impact energy, the ability of the dispersed phase to interfere with the propagation of the fracture. Also the thermal behavior shows that between 30% and 40% of PA6, the polyamide phase is able to crystallize in cooling, indicating further that between these two compositions is obtained a phase inversion.
References
- J. Ren, H. Wang, L. Jian, J. Zhang, S. Yang. Morphological, thermal and mechanical properties of compatibilized Nilon 6/ABS. Journal of Macromolecular Science 47 (2008) 712-722.
- V.J. Triacca, S. Ziaee, J.W. Barlow, H. Keskkula, D.R. Paul. Reactive compatibilization of blends of nylon 6 and ABS materials. Polymer 32 (1991) 1401-1413.
- G. Humme, F. Fahnler, D. Neuray, K.H. Ott, P Tacke. Impact-Resistant Polyamide moulding compositions. Bayer Aktiengesellschaft US Patent n. 4,221,879 - Sep. 9 1980.
martedì 11 ottobre 2011
Using of silica as anti blocking agents in plastic films
Using of silica as anti blocking agents in plastic films
Authors: Maura Del Chicca, Carmine Di Fiore
1. Introduction
The films of plastic material tend to adhere to one another making difficult the separation of the individual layers. This phenomenon is evident for example in the opening of shoppers when the two parts are in contact with one another. The adhesion between the layers of film is usually called blocking effect, and it is an intrinsic property of some polymers such as LDPE, LLDPE, PP, PET, PA, etc. .. The causes of this phenomenon are not yet fully understood ; it was hypothesized that the low molecular weight fractions of the polymer, and probably also the molecules of some low melting additives, emerging to the surface of the film to form a kind of adhesive layer. It may however also consist of Van der Walls interactions type amorphous regions of the polymer between two different layers of film in contact between them. The adhesion force that is established between two layers of film is identified with the term "blocking force" and corresponds to the force required for their separation. The force also acts on the blocking resistance of two layers of film to the mutual sliding, ie increases the coefficient of friction (COF).
The "blocking force" is directly proportional to the number and to the 'intensity of interaction forces; reduce the effect of blocking means consequently reduce these interactions. Antiblocking additives are divided into two categories organic and inorganic. The organic additives act by reducing the COF, and are not subject of this article. The inorganic additives added to the polymer mass, creating the surface microroughness which distance between their layers and reduce the contact points.
antiblocking the number of particles on the film surface
the size and shape of the particles of antibloking
The particles are more abundant on the surface of the film, the greater the surface roughness, hence the points of adhesion are less and so the effect blocking decreases. The particle size must also be commensurate to the final thickness of the film: if the diameters is too small the number of particles that emerge is reduced, if the diameters are excessive will result in the possibility of easy breakage of the films during the use and can give problem of breakage of "ball" during the production of film (blow film extrusion).
Finally, in regard to the shape, it was observed that irregular shapes of the particles produce a greater number of asperities and greater antibloking effect. One understands at this point also the importance of a good dispersion of the antibloking particles in the molten polymer; if the silica remains in the form of aggregated the roughness that will be formed are less and the anti blocking effect will be smaller.
3. Anti-blocking agents
On the market there are several anti-blocking agents (organic and inorganic); the choice depends on the polymer used, the final thicknessof the film, the percentage that can be used, the specific needs of the producer and the final application of the film.
Antiblocking inorganici commercialmente significativi
| |
Tipo
|
Descrizione chimica
|
Carbonato di Calcio
|
CaCO3 di origine minerale
|
Talco
|
Silicati di magnesio di origine minerale
|
Caolino/argilla
|
Silicati di alluminio di origine minerale
|
Silice naturale
|
SiO2 di origine minerale
|
Silice sintetica
|
SiO2 di sintesi
|
Mica
|
Silicati di alluminio e potassio di origine minerale
|
Zeoliti
|
Silicati di alluminio contenenti ioni di Na, K e Ca
|
Sfere ceramiche
|
Silicati-Allumina ceramica
|
Antiblocking organici commercialmente significativi
| |
Tipo
|
Descrizione chimica
|
Stearati metallici
|
Zinco stearato,…
|
Silicone
|
Oli / gomme siliconiche
|
Polimeri fluorurati
|
Politetrafluoroetilene (PTFE), ….
|
Stearati organici
|
Gliceril monosterarato (GMS), ….
|
Ammidi primarie
|
Eurucamide, Stearamide, ….
|
Ammidi secondarie
|
Stearil eurucamide
|
Bis-ammidi
|
Etilen bis stearamide (EBS)
|
Grazie alle loro proprietà di inerzia chimica, resistenza al calore, efficacia, ecc. le silici (sintetiche o naturali) sono gli additivi antiblocking inorganici più largamente utilizzati.
Le silici
Le silici si presentano sotto forma di una polvere bianca molto fine ed estremamente leggera. La ragione dell'eccezionale efficacia delle silici come agenti antibloching è da ricercare nella loro struttura. Possiamo immaginare tale struttura come una microscopica spugna o una piccolissima pietra pomice, ossia un corpo ricco di canalini che lo rendono estremamente leggero; con l’area superficiale (intesa come somma della superficie esterna più quella interna ai canalini) molto elevata, essa va per:
- le silici naturali da i 2 ai 70 m2/g con dimensioni delle particelle che vanno dai 40 ai 100 micron di diametro
- le silici sintetiche da i 50 ai 1000 m2/g con dimensioni delle particelle che vanno dai 2 ai 10 micron di diametro
Silice naturale
La silice naturale è ottenuta da roccia sedimentaria composta da scheletri di diatomee. Le diatomee sono organismi vegetali che possiedono membrane ricche in silicio di dimensioni che vanno da qualche micron a 2 millimetri circa. Gli scheletri sono composti principalmente da silice amorfa ed esibiscono larghi intervalli di porosità, e varietà di struttura e dimensioni dei pori. Le silici naturali in genere contengono dal 70- 90% SiO2 , un 3-7% di acqua oltre a tracce di sostanze organiche, quarzo naturale, carbonato di calcio e argilla. Durante il processo di calcinazione le sostanze organiche e l’acqua vengono rimosse mentre quarzo ed altri componenti minori restano nella silice come impurezze.
Silici Sintetiche
La silice sintetica può essere ottenuta con differenti processi. Essa è un solido completamente amorfo e privo di impurezze (SiO2 > 99,8%); caratterizzato dalle dimensioni delle particelle, dal livello di microporosità, ecc. Le dimensioni inferiori rispetto alla silice naturale, combinate con la relativa maggiore area superficiale, l'assenza di sostanze inquinanti rendono le silici sintetiche il prodotto ideale come agente antiblocking. La microporosità elevata permette l’impiego della silice sintetica anche come adsorbente, anche se nel settore del film il suo ruolo elettivo è come antiblocking.
Utilizzo dei vari additivi antiblocking
Nella scelta del tipo di antiblocking inorganico da utilizzare devono essere considerati diversi fattori tra questi citiamo: il prezzo, l’efficacia, le proprietà ottiche, le potenziali interazioni dannose con gli altri additivi della formulazione, il rapporto prezzo/performance, ecc
Tipo di antiblocking
|
Polimero del film
|
Concentrazione tipica
|
Silice sintetica
|
LDPE, LLDPE, PP, PET, PA
|
0,10-0,20 %
|
Silice naturale
|
LDPE, LLDPE
|
0,25-0,45%
|
Talco/Carbonato/
Caolino/argilla
|
LDPE, LLDPE
|
0,35-0,65%
|
Zeoliti
|
LLDPE, PVC, PET, PA
|
0,20-0,40%
|
La silice naturale, o terra di diatomee è largamente utilizzata nei film in LDPE e LLDPE per il suo basso costo e per il basso coefficiente di assorbimento verso gli altri additivi della formulazione, esempio gli agenti antistatici, antifog, slip ecc. Tuttavia la silice naturale ha un’efficacia antiblocking inferiore a quella della silice sintetica. Inoltre vi sono dei rischi per la salute legati alla parte cristallina, tali rischi sono totalmente annullati dall’utilizzo come masterbatch. Tipicamente i master di silice naturale contengono dal 10 al 50% di principio attivo. Per quanto riguarda le proprietà ottiche dei film la silice naturale non ha problemi critici.
La silice sintetica è largamente utilizzata nei film in LDPE e LLDPE per la sua estrema efficacia come antiblocking. La sua purezza chimica e il fatto che la struttura sia completamente amorfa la rendono sicura per i rischi alla salute anche durante la fase di pre-dispersione, (produzione del masterbatch). Inoltre grazie al fatto che durante la fase di produzione della silice sintetica possono essere determinati:
- le dimensioni delle particelle
- l'area superficiale
- la presenza di eventuali gruppi reattivi
- ecc.
essa è utilizzata per risolvere anche problemi molto particolari legati alla produzione di film speciali.
Conclusioni
Tra i vari agenti antiblocking le silici sono il prodotto con la maggiore efficacia, fatto questo dovuto alla loro elevata area superficiale e conseguente bassa densità. Il meccanismo di funzionamento come agente antiblocking (comune agli altri antiblocking inorganici) è dovuto alla creazione di una serie di rugosità superficiali che riducendo i punti di contatto tra i film riducono l'effetto di blocking.
Le silici si dividono in naturali (terre di diatomee) e sintetiche.
Le silici naturali presentano come vantaggi
- basso costo
- masterbatch ad elevata concentrazione
- minore assorbimento altri additivi rispetto alle silici sintetiche
come svantaggi
- rischi per la salute durante la fase di produzione dei masterbatches
- presenza di impurezze
- minore efficacia antiblocking rispetto alle silici sintetiche
Le silici sintetiche presentano come vantaggi
- l'elevata area superficiale
- possibilità di inserimento di gruppi reattivi
- assenza di impurezze
- assenza di rischi per la salute durante la fase di produzione dei masterbatches
come svantaggi
- costo maggiore
- concentrazione massima nei masterbatch 20%
- maggiore assorbimento altri additivi rispetto alle silici naturali
La scelta di quale tipo di silice utilizzare è determinata da una serie di fattori tuttavia il rapporto prezzo/prestazioni in genere è favorevole alle silici naturali. La scelta delle silici sintetiche come antiblocking è giustificata quando vi sono specifiche necessità produttive, o necessità di purezza dei principi attivi.
11 ottobre 2011
After many hesitations tonight I finally decided to create my own blog.
It will be because today I'm happy...(I managed to develop a PC -PBT with high impact resilience), or because it is a very long time that I think to create blog ... tonight I did.
As can be understood from the title of my blog I'm interested in everything related to plastics. Even if I obtained a degree in Industrial Chemistry my approach to polymers, has a cut very practical.
Thanks to my work as a researcher in the years I have had the opportunity to develop the formulations of various products in common use.
To be honest I had never created anything really new but I had the chance to get the formulations of different plastic materials, common use .
I realize that my blog is limited to those who share my passion for plastics and in part have the knowledge necessary to understand the technical parts of my speeches, but I hope to be as clear and simple as possible.
In any case, thanks to all those who that will follow the various posts which will gradually be published. At the end a bigger thanks to those who wish to enrich with their comments my blog.
It will be because today I'm happy...(I managed to develop a PC -PBT with high impact resilience), or because it is a very long time that I think to create blog ... tonight I did.
As can be understood from the title of my blog I'm interested in everything related to plastics. Even if I obtained a degree in Industrial Chemistry my approach to polymers, has a cut very practical.
Thanks to my work as a researcher in the years I have had the opportunity to develop the formulations of various products in common use.
To be honest I had never created anything really new but I had the chance to get the formulations of different plastic materials, common use .
I realize that my blog is limited to those who share my passion for plastics and in part have the knowledge necessary to understand the technical parts of my speeches, but I hope to be as clear and simple as possible.
In any case, thanks to all those who that will follow the various posts which will gradually be published. At the end a bigger thanks to those who wish to enrich with their comments my blog.
Iscriviti a:
Post (Atom)
Plastic: Friend or Enemy
Plastic: Friend or Enemy Plastic as we know it, has been our good friend for many years, so far it has allowed us: - move faster (t...

-
La CO 2 , anidride carbonica (o biossido di carbonio) è un gas naturale, naturalmente presente nell'aria che respiriamo, ma come ogni...
-
With the emergence of the matter pollution, it was necessary to reduce the environmental impact of every product an all phases of its life ...
-
Plastic: Friend or Enemy Plastic as we know it, has been our good friend for many years, so far it has allowed us: - move faster (t...